Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
not(x) → if(x, false, true)
and(x, y) → if(x, y, false)
or(x, y) → if(x, true, y)
implies(x, y) → if(x, y, true)
=(x, x) → true
=(x, y) → if(x, y, not(y))
if(true, x, y) → x
if(false, x, y) → y
if(x, x, if(x, false, true)) → true
=(x, y) → if(x, y, if(y, false, true))
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
not(x) → if(x, false, true)
and(x, y) → if(x, y, false)
or(x, y) → if(x, true, y)
implies(x, y) → if(x, y, true)
=(x, x) → true
=(x, y) → if(x, y, not(y))
if(true, x, y) → x
if(false, x, y) → y
if(x, x, if(x, false, true)) → true
=(x, y) → if(x, y, if(y, false, true))
Q is empty.
We use [23] with the following order to prove termination.
Recursive path order with status [2].
Quasi-Precedence:
and2 > [not1, false, =2] > [if3, true]
or2 > [if3, true]
implies2 > [if3, true]
Status: true: multiset
and2: multiset
if3: [3,1,2]
false: multiset
implies2: [1,2]
or2: [2,1]
=2: [2,1]
not1: [1]